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Spectral moments of polymer graphs 
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Summary. It is shown that for any k, the kth spectral moment of a polymer graph 
composed of n monomer units is an exact linear function of the parameter n. This 
linear relation holds for all values of n, greater than a critical value 4o = Co(k). 
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Introduction 

if 21, ,2-2, . . .  , ~./V are the eigenvalues of a molecular graph G, then the kth spectral 
moment of G is defined as 

N 
Mk = Mk(G)= ~ (21) k. 

i=1 

Since the pioneering works of Hall [1] and Marcus [2], graph spectral mo- 
ments found numerous applications in quantum chemistry [1-14] and in solid- 
state physical chemistry [15-20], and their theory is nowadays well elaborated. 
Spectral moments are related to a special type of random walks (see below). There 
is a rich statistical-mechanical literature on random walks of graphs, especially, but 
not exclusively, of lattice graphs (see, for instance, Refs. [21-26] and the references 
cited therein). 

A problem studied in considerable detail is the dependence of Mk on molecular 
structure [27-31]. This dependence was first investigated by Marcus [21 who put 
forward solutions for k = 2, 4 and 6. Eventually, the cases k = 8 [28, 30], k = 10 
[29] and k = 12 [31] were resolved for benzenoid systems, but with increasing 
k the respective expressions become so complicated that much progress along these 
lines is hardly to be expected. 

Another direction of research on spectral moments was recently initiated by 
proving [32] that the spectral moments of linear polyacenes with h hexagons are 
linear functions of h. This result could be obtained thanks to the fact that explicit 
analytical expressions are known for the eigenvalues of linear polyacenes. Since for 
the vast majority of polymer graphs no such expressions are known, the proof 
technique employed in Ref. [32] cannot be employed in the case of other classes of 
polymer graphs. 



192 I. Gutman, V. R. Rosenfeld 

However, in the same work [32], by means of numerical examples, it was 
established that also in many other homologous series the spectral moments 
increase as (exact) linear functions of the number of building blocks. In fact, if 
n denotes the number of monomer units and X, is the respective polymer graph, 
then the relation 

i k ( X , )  = A n  -- B (1) 

was empirically found to be satisfied in many cases; here A and B are parameters 
depending on the nature of the polymer examined as well as on k, but independent 
of n. Formula (1) is usually violated by the first few members of the homologous 
series. However, for n being greater than a critical value 4o = ~o(k), Eq. (1) is 
satisfied exactly. 

In this paper we show that the above-described size dependency of the spectral 
moments is, indeed, a generally valid regularity. 

Preliminary considerations 

In this work we consider two types of polymer graphs, which we denote by Gn 
and g,. Let G be an arbitrary graph and x l ,  x2,  . . . ,  xp, y l ,  Y2, . . . ,  Yp be its certain 
(not necessarily distinct) vertices. 

The class I polymer graph Gn, n >/2, is obtained by taking n copies of G and by 
joining (by means of a new edge) the vertex x~ of the ith copy with the vertex yj of 
the (i + 1)th copy, and by repeating this fo r j  = 1, 2 . . . .  , p and i = 1, 2, . . . ,  n - 1. 
In addition to this, G1 is chosen so as to be isomorphic with G. 

The class 2 polymer graph g,, n t> 2, is obtained by taking n copies of G and by 
identifying the vertex xj of the ith copy with the vertex yj of the (i + 1)th copy, and 
by repeating this for j = 1, 2, . . . ,  p and i = 1, 2, . . . ,  n - 1. In addition to this, we 
define g~ so as to coincide with G. 

The vertex of g,, obtained by identifying the vertex xj of the ith copy of G with 
the vertex yj of the (i + 1)th copy of G, will be denoted by zj,~, i = 1, 2, . . . ,  n - 1. 
To maintain consistency, we label the vertices, x~, x2,  . . . ,  xp of the first copy of G 
by Z~,o, Z2,o, ... ,Zp, o, and the vertices Y l , Y 2 ,  .. .  ,Yp of the nth copy of G by 
Z l , n ,  Z 2 , n ,  . . .  , Zp,  n. 

Notice that if G has N vertices and M edges, then G~ has n N  vertices and 
n M +  (n - 1)p edges, whereas g~ possesses n N  - (n - 1)p vertices and n M  edges. 

From the way in which the graphs G~ and g, are constructed one immediately 
deduces the following. 

Lemma 1. L e t  n >1 m >~ 1. T h e  po lymer  graphs G,  and gn contain n - m + 1 dist inct  
subgraphs isomorphic  to Gm and g,~, respectively.  

A walk in a graph G is an ordered sequence w = (Vo, Vl, . . . ,  Vk) of vertices of G, 
such that for i = 1, . . . ,  k, the vertices vi- 1 and vi are adjacent. This walk is said to 
be of length k. (In statistical mechanics, especially when G represents a lattice, w is 
usually referred to as a "random walk" [21-24].) Note that it is not required that 
the vertices of w are all mutually different. If Vo and vk coincide, then w is said to be 
self-returning (or closed) walk. 

An elementary result in the theory of spectral moments is 

Mk(G) = number of self-returning walks of length k in G. (2) 
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Marcus [2] seems to be the first who explicitly stated and proved Eq. (2), although 
the result was certainly known also to earlier authors. Eventually, Eq. (2) was 
restated and reproven by many other researchers in this field. 

In the case of polymer graphs G. and g,, a self-returning walk may involve 
vertices from several monomer units. In the case of class 1 polymer graphs G., we 
simply say that a self-returning walk w passes through a particular monomer unit 
of G, if it contains at least one vertex of that monomer unit. The situation with the 
class 2 polymer graphs g, is somewhat more complicated. A self-returning walk of 
w of g, passes through the ith monomer unit of g. if it contains at least two vertices 
of that unit which neither both belong to the set {z~,i-1, z2,i-1, . . . ,  zp, i-1} nor 
both belong to the set {zl,i, z2,i, . . . ,  zp, i}. 

We further say that w has extent ~ if it passes through ~ monomer units, but 
does not pass through ~ + 1 monomer units. 

The number of self-returning walks of G, and g. of length k and of extent ~ is 
denoted by Wk(G,, 4) and Wk(g,, ~), respectively. 

Lemma 2. Let G, and g. be polymer graphs of  class 1 and 2, respectively, composed of  
n monomer units, n >1 1. Then 

(a) Wk(G,, 4) = (n -- ¢ + 1)Wk(G¢, 4) i f  1 <~ ~ <~ n, 

Wk(g., 4) = (n -- ~ + 1) Wk(g¢, 4) i f  1 <~ ~ <~ n, 

(b) Wk(G., 4) =0, if~ > n, 

wk(g., ~) =0 if~>n. 
Proof Part (b) of Lemma 2 is a straightforward consequences of the definition of 
the quantities Wk(G,, 4) and Wk(g., ~). In order to verify part (a) notice that each 
self-returning walk of G, or g, of extent ~ is at the same time a self-returning walk of 
a unique subgraph of G, or g,, respectively, composed of ~ monomer units. By 
Lemma 1 the number of such subgraphs is n - ~ + 1. [] 

Proving Eq. (1) 

In order to arrive at Eq. (1), we must first observe that self-returning walks of length 
k may pass through only a limited number of monomer units of G. or g.. Denote by 
4o = ~o(k) the greatest number of monomer units which a self-returning walk can 
embrace, i.e. 

Wk(G¢, 4) > O and Wk(g¢, 4) > O f o r ~ < 4 0 ,  

Wk(G¢, 4) =0  and Wk(g¢, 4) = 0  for ~ > 40. (3) 

Consider first the polymer graphs of class 1 and examine their spectral mo- 
ments Mk(G.). Then, in view of relations (2) and (3), 

¢o 
Mk(G.) = y" Wk(G., 4)= ~ Wk(G., 4). (4) 

We have now to distinguish between two cases 

Case 1: n ~ 40. Then by Lemma 2(b), Eq. (4) reduces to 

Mk(G.) = ~ Wk(G., 4) 
~=1 
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and by Lemma 2(a) we have 

Mk(G,) = ~ (n - 4 + 1) Wk(G¢, ¢) = n ~ Wk(G¢, 4) 

- ~ (4 - 1 )  Wk(G¢, 4). (5) 
¢=1 

Both summations on the right-hand side of Eq. (5) depend on n and therefore the 
entire expression on the right-hand side of (5) is not a linear function of n. 

Case 2: n > ~o. Bearing in mind Lemma 2(a), Eq. (4) yields 

¢o ~o 
Mk(G,) = Z (n - 4 + 1) WR(G¢, ~) = n Z Wk(G¢, ~) 

~=1 ~=1 

~o 
- ~ (4 - 1) Wk(G¢, 4). (6) 

~=1 

Both summations on the right-hand side of (6) are independent of the parameter 
n and, consequently, the kth spectral moment of GR is a linear function of n. 

The above conclusions can be summarized as follows 

Theorem 1. For any value of k, k > O, an integer 4o = ~o(k) can be found, such that 
Eq. (1) holds for X,  = G., n > 40. In other words, Eq. (1) holds for polymer graphs of 
class 1, provided the number of monomer units is sufficiently large. Furthermore, the 
coefficients A and B occurring in Eq. (1) are given by 

~o Q 
A =  ~ Wk(G¢,~) and B =  ~ (4 - 1 )  Wk(G¢, 4). 

~=1 ¢=1 

The analysis of the spectral moments of polymer graphs of class 2 is similar, but 
somewhat more complicated. In this case, namely, the expression y,~= 1 Wk(g,, 4) 
does not count all self-returning walks of g, of length k. The walks omitted in the 
latter sum are those embracing only some of the vertices zl, i, Zz, i, . . . ,  zp, i for some 
fixed value of i, 0 <~ i <~ n. For each value of i the number of such walks is the same. 
It is convenient to denote this number by Wk(Go, 0). Because there are n + 1 
distinct values of i, the total number of such walks is (n + 1) Wk(Go, 0) which, in 
order to make our notation compact, we denote by Wk(G~, 0). 

Instead of Eqs. (4)-(6) we now have 

Mk(G.) = Z 4)= Z 4) 
¢=o ~=o 

~=o ¢=o 
n 

- ~ (4 - -1 )  WR(g¢,¢) ifn~<~o 
~=O 

~o ~o 
Mk(g.) = ~ (n -- 4 + 1) Wk(g¢, ~) = n ~ Wk(g¢, ~) 

~=0 ~=O 
Q 

- ~ (~ - -1 )  Wk(9¢,4) i f n > 4 0  
¢=O 
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and in full analogy with Theorem 1 we deduce: 

Theorem 2. For any value of k, k > O, an integer 4o = 4o(k) can be found, such that 
Eq. (1) holds for X ,  = 9,, n > 40. In other words, Eq. (1) holds for polymer graphs of 
class 2, provided the number of monomer units is sufficiently large. Furthermore, the 
coefficients A and B occurring in Eq. (1) are given by 

¢o ~o 
A =  ~" Wk(9¢,4) and B =  ~ (4 - 1 )  Wk(g¢, 4). 

¢=o ¢=o 
Needless to say that 4o in Theorems 1 and 2 have different values. 

Discussion 

In order to get a better insight into the result formulated in Theorems 1 and 2, we 
would need to know what "sufficiently large" means with regard to the number of 
monomer units. This information may also be important for any practical applica- 
tion of Eq. (1). The value of 4o depends in a complicated way both on the structure 
of the monomer unit G and on the way in which the monomers are coupled 
together. Here we consider only the simplest case, namely when the shortest path 
going through a monomer unit starts at the vertex yj and ends at vertex xj. 

Consider first polymer graphs of class 1. Let, as before, G be the molecular 
graph of the monomer unit. Let the distance between yj and xj in G be d. Then 
the shortest self-returning walk having extent 4 must be of length k = (2d + 2) 
4 - (4d + 2). Indeed, such a walk would start at the vertex x~ of a certain, say hth, 
monomer unit, continue to vertex yj of the (h + 1)th monomer unit (one step), 
continue to vertex xj of the (h + 1)th monomer unit (d steps), continue to vertex yj 
of the (h + 2)th unit (one step), etc., arrive at vertex x~ of the (h + 4 -2 ) th  unit 
(d steps) and continue to vertex y~ of the (h + 4 - 1 ) t h  unit (one step), thus 
passing through 4 monomer units. This requires a total of ( 4 - 1 )  + ( 4 - 2 )  
d = (d + 1)4 - (2d + 1) steps. The same number of steps is needed to return to the 
starting vertex. 

Hence in this case 4o and k are related as 

(2d + 2) 4o - (4d + 2) ~< k < (2d + 2) (40 + 1) - (4d + 2). (7) 

Setting 4o = 1 into Eq. (7) we obtain - 2 d  ~< k < 2 which means that 4o(1) = 1. 
Setting 4 o = 2  in Eq. (7) we obtain 2 4 k < 2 d + 4  which implies 
40(2) = 40(3) . . . . .  ~o(2d + 3) = 2, etc. 

When calculating ~o, the case of polymer graphs of class 2 is simpler. Under the 
above-described conditions the shortest self-returning walk of 9, having extent 

must be of length k = 2[2 + (4 - 2)d] = 2d4 - (4d - 4). Instead of Eq. (7) we 
now have 

2d~o - (4d - 4) ~< k < 2d(4o + 1) - (4d - 4) 

from which one concludes 4o(1)=4o(2)=4o(3)= 1, 4o(4)=4o(5) . . . . .  
~o(2d + 3) = 2, etc. 

The result communicated in this paper has one obvious application. If one is 
interested in the kth spectral moments of a homologous series then it is sufficient to 
evaluate numerically this moment for only two members of the series. If the 
respective members are large enough, then Eq. (1) is applicable, the parameters 
A and B can readily be computed and thus all kth spectral moments (except, 
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perhaps, the first few members  of the series) become available. What  is "large 
enough" can be estimated using the above-described procedure. The critical para- 
meter ~o(k), which determines when exact linearity begins, is a very slowly increas- 
ing function of k, thus making numerical calculations of the spectral moments  
quite easy. 

Generalizations and extensions 

Using reasoning analogous to, but sometimes somewhat more complex than what 
is outlined in the preceding sections, we arrive at the following generalizations and 
extensions of Theorems 1 and 2 [33]. We state them without proofs. 

If  the polymer graph considered is cyclic, i.e., if its terminal monomer  units are 
joined together in the same manner  as other monomer  units, then we have 

Mk(X. )  = An 

with the same parameter  A as in Eq. (i). 
If  the open-chain polymer graph has arbitrary terminal fragments (U and V ), 

differing from the monomer  units, then instead of Eq. (1) we have 

Mk(X.)  = An - C 

also with A the same as in Eq. (i). Furthermore,  C = Cv + Cv, such that Cv is 
independent of V and Cv is independent of U. 

If m copies of the polymer X ,  are bound in an m x n rectangular network, Ym,,, 
then for m and n being sufficiently large, the kth spectral moment  of Ym,. is an exact 
linear function of m and an exact linear function of n, i.e., 

Mk(Y,n,n) = A 'm + B'n + C'mn + D' 

with A', B', C'  and D'  being independent of m and n. In the special case of a square 
n x n network, 

Mk(Y, , , )  = A"n 2 + B"n + C", 

where A" = C', B" = A'  + B', and C" = D'. The generalization of these expres- 
sions to three- and multidimensional networks is straightforward. 
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